Hemmings, A. M., Lisgarten, J. N., Palmer, R. A. \& Gazi, D. M. (1990). Acta Cryst. C46, 205-207.

Karaulov, S. (1993). SNOOP1. Molecular Plotting Program. University of Wales, Cardiff, Wales.
Lisgarten, J. N., Palmer, R. A., Hemmings, A. M. \& Gazi, D. M. (1990). Acta Cryst. C46, 396-399.

Rollett, J. S. (1965). Editor. Computing Methods in Crystallography, p. 22. Oxford: Pergamon.

Sheldrick, G. M. (1992). SHELXL92. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Taylor, J. F. (1940). J. Biol. Chem. 135, 569-575.
Zaleski, J. (1904). J. Physiol. Chem. 43, 11-17.

Acta Cryst. (1996). C52, 1180-1182

Tetramethylammonium Tris(thiobenzoato$O, S) \operatorname{tin}($ II)

Jagadese J. Vittal and Philip A. W. Dean*
Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7. E-mail: pawdean@julian.uwo.ca

(Received 23 October 1995; accepled 15 January 1996)

Abstract

The synthesis, structure and ${ }^{119} \mathrm{Sn}$ NMR spectrum of the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{Sn}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OS}\right)_{3}\right]$, are reported. Crystallographic threefold symmetry is present in both the anion and cation. In the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anion, the $\mathrm{Sn}^{\mathrm{II}}$ coordination geometry is triangular pyramidal, with the S atoms forming the basal plane and the Sn atom at the apex; the $\mathrm{Sn}-\mathrm{S}$ distance is 2.592 (2) \AA. In addition, weak intramolecular interactions occur between the Sn atom and the carbonyl O atoms [$\mathrm{Sn} \cdots \mathrm{O} 2.967$ (2) \AA]. The ${ }^{119} \mathrm{Sn}$ NMR chemical shift of the title compound is -227 p.p.m. (MeCN, 295 K).

Comment

The chemistry of metal thiobenzoates has not been extensively investigated (Cras \& Willemse, 1987; McCormick, Beremon \& Baird, 1984). We have reported the structures of the thiobenzoate complexes of $\mathrm{Cd}^{\text {II }}$ (Vittal \& Dean, 1993), Pb^{11} and Billi (Burnett, Dean \& Vittal, 1993).
Reaction of $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{NH}^{+} . \mathrm{SOCPh}^{-}$and $\mathrm{Me}_{4} \mathrm{NCl}$ in the ratio 1:3:1 afforded the title compound, (I), in low yield. The ${ }^{119} \mathrm{Sn}$ chemical shift is -227 p.p.m., the resonance being significantly more shielded than that of $\left[\mathrm{Sn}(\mathrm{SPh})_{3}\right]^{-}$, the chemical shift of which is 140-146 p.p.m. (Arsenault \& Dean, 1983; Dean, Vittal \& Payne, 1985). Thus, structural information about the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anion is highly desirable.

(I)

The structure determination of (I) shows it to consist of discrete anions and cations. Both the $\mathrm{Me}_{4} \mathrm{~N}^{+}$and $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$ions lie on a crystallographic threefold axis; a view of the anion is shown in Fig. 1. The three SOCPh^{-}ligands are bonded to Sn^{11} primarily through their S atoms. The coordination sphere around the Sn atom can be described as a trigonal pyramid with the three S atoms occupying the base $[\mathrm{S} \cdots \mathrm{S}$ distance 3.658 (3) $\AA]$ and the Sn atom at the apex. The geometry is consistent with the presence of a stereochemically active lone pair on Sn . The $\mathrm{Sn}-\mathrm{S}$ distance of 2.592 (2) \AA is longer than those of 2.532 (1)2.552 (1) A found for trigonal pyramidal $\left[\mathrm{Sn}(\mathrm{SPh})_{3}\right]^{-}$ (Dean, Vittal \& Payne, 1985). Weak coordination to the three carbonyl O atoms, however, also occurs in $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$; the $\mathrm{Sn} \cdots \mathrm{O}$ distance of 2.967 (2) \AA is less than the sum of the relevant van der Waals radii ($3.7 \AA$ § Bondi, 1964). The Sn atom is 1.64 (1) \AA from the S_{3} plane and 0.14 (1) \AA from the O_{3} plane. The dihedral angle between the SnSCO planes is 101.5 (2) ${ }^{\circ}$. In the PhCOS^{-}ligands, the COS planes are twisted from the phenyl ring planes by $18.5(2)^{\circ}$.

Fig. 1. A view of the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anion showing the labeling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radii.

The methyl groups of the $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation are disordered. The two disorder models (occupancies of 0.6 and 0.4) are related by an inversion at N 1 along the $\mathrm{C} 8-\mathrm{N} 1$ axis. In the crystal lattice, each $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation
is surrounded by eight $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anions. A view of the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anions surrounding an $\mathrm{Me}_{4} \mathrm{~N}^{+}$ cation is shown in Fig. 2. The distance between the benzene rings encasing the $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation is 8.80 (5) \AA and the corresponding $\mathrm{Sn} \cdots \mathrm{Sn}$ spacing along the c axis is 14.333 (3) A. The large void available to the cation may account for its orientational disorder.

Fig. 2. A view looking down the c axis (threefold) showing the $\left[\mathrm{Sn}(\mathrm{SOCPh})_{3}\right]^{-}$anions surrounding an $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation. One anion on top of the $\mathrm{Me}_{4} \mathrm{~N}^{+}$cation has been omitted for clarity, as have the H atoms.

Experimental

All the chemicals employed were of reagent grade and used as received. The synthesis was carried out under an argon atmosphere. Thiobenzoic acid ($2 \mathrm{ml}, 14.7 \mathrm{mmol}$) was added to a solution of $\mathrm{Et}_{3} \mathrm{~N}(1.85 \mathrm{ml}, 13.3 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$. To the resulting yellow solution was added with stirring $\mathrm{SnCl}_{2} 2 \mathrm{H}_{2} \mathrm{O}(0.998 \mathrm{~g}, 4.4 \mathrm{mmol})$ dissolved in methanol $(10 \mathrm{ml})$, producing a yellow precipitate. A solution containing $\mathrm{Me}_{4} \mathrm{NCl}(0.484 \mathrm{~g}, 4.4 \mathrm{mmol}$) in methanol (10 ml) was added with stirring to the yellow mixture, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(35 \mathrm{ml})$ and $\mathrm{MeCN}(10 \mathrm{ml})$. The mixture was warmed to 313 K for 30 min resulting in a turbid yellow solution which was filtered hot and left to crystallize at 278 K . The pale-yellow diffraction-quality crystals obtained were separated by decantation and washed with methanol and diethyl ether, and then dried in a stream of argon (yield 0.85 g; 31.7%). Analysis: $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}_{3} \mathrm{Sn}$ requires C 49.68 , H 4.50, N 2.32%; found C $49.60,49.82$, H $4.50,4.60$, N 2.31 , 2.36%. The C, H and N analyses were performed by Guelph Chemical Laboratories Ltd. The ${ }^{119}$ Sn NMR spectrum (296 K , 74.60 MHz) was measured and referenced to neat SnMe_{4}
as described previously by Dean \& Srivastava (1985). The sample was prepared in MeCN in 0.03 M concentration.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)\left[\mathrm{Sn}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OS}\right)_{3}\right]$
$M_{r}=604.35$
Rhombohedral
(hexagonal axes)
R3c
$a=12.709$ (2) \AA
$c=28.667(6) \AA$
$V=4009.6(14) \AA^{3}$
$Z=6$
$D_{i}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.50(5) \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
Data collection
Siemens $P 4$ diffractometer
$2 \theta / \omega$ scans
Absorption correction:
SHELXTLIPC Gaussian (Sheldrick, 1990b)
$T_{\text {min }}=0.638, T_{\text {max }}=$ 0.695

1881 measured reflections 1076 independent reflections 1022 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0251$
$w R\left(F^{2}\right)=0.0635$
$S=1.056$
1076 reflections
118 parameters
$w=1 /\left[\sigma^{2}\left(F_{\sigma}^{2}\right)+(0.038 P)^{2}\right.$ $+2.279 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.60 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.38 \mathrm{e}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=12.4-13.5^{\circ}$
$\mu=1.216 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Cube
$0.34 \times 0.32 \times 0.28 \mathrm{~mm}$
Yellow
$R_{\text {int }}=0.0158$
$\theta_{\text {max }}=27.49^{\circ}$
$h=-1 \rightarrow 14$
$k=-13 \rightarrow 14$
$l=-1 \rightarrow 37$
3 standard reflections monitored every 297 reflections intensity variation: 3.6\%

Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.00025 (8)

Atomic scattering factors
from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Absolute configuration:
Flack (1983) parameter $=0.05$ (9)
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {ca }}$
Sn 1	1	1	2/3	0.04034 (15)
SI	0.86963 (10)	0.81290 (10)	0.61426 (8)	0.0523 (3)
Ol	0.7313 (4)	0.8502 (3)	0.6715 (2)	0.0599 (9)
Cl	0.7343 (3)	0.7811 (3)	0.64252 (15)	0.0385 (7)
C2	0.6215 (4)	0.6628 (4)	0.6314 (2)	$0.0399(8)$
C3	0.5234 (4)	0.6210(4)	0.6620 (2)	$0.0470(9)$
C4	0.4185 (4)	0.5089 (5)	(). 6542 (2)	$0.0598(12)$
C5	0.4102 (5)	0.4409 (4)	0.6155 (2)	$0.0620(12)$
C6	0.5074 (4)	0.4822 (4)	0.5846 (2)	0.0613(13)
C7	0.6123 (4)	0.5927 (4)	0.5923 (2)	$0 .(2478$ (9)
N1	1/3	2/3	0.5157 (3)	$0.053(2)$
C8	1/3	$2 / 3$	0.5669 (5)	0.078 (5)
C9	0.2064 (10)	0.6065 (9)	0.4956 (5)	0.080 (3)
C8 ${ }^{\prime}$	1/3	2/3	0.4641 (6)	0.086 (9)
C9 ${ }^{\prime}$	0.2832 (16)	0.7422 (15)	0.5355 (7)	0.089 (5)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Snl-S1	2.592 (2)	C2-C7	1.401 (5)
$\mathrm{Sl}-\mathrm{Cl}$	1.755 (4)	C3-C4	1.400 (7)
$\mathrm{Ol}-\mathrm{Cl}$	1.224 (5)	C4-C5	1.377 (8)
$\mathrm{Cl}-\mathrm{C} 2$	1.504 (5)	C5-C6	1.393 (8)
C2-C3	1.394 (6)	C6-C7	1.387 (6)
$\mathrm{SI}-\mathrm{Snl}-\mathrm{S1}{ }^{1}$	89.76 (6)	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{Cl}$	122.7 (4)
$\mathrm{Cl}-\mathrm{Sl}$ - Snl	92.70 (13)	C2-C3-C4	120.2 (4)
$\mathrm{O}-\mathrm{-Cl}-\mathrm{C} 2$	120.3 (4)	C5-C4-C3	120.1 (4)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{Sl}$	121.8 (3)	C4-C5-C6	120.1 (5)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{S} 1$	117.8 (3)	C7-C6-C5	120.2 (5)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	119.1 (4)	C6-C7-C2	120.2 (4)
C3-C2-C1	118.2 (3)		

All H atoms were placed in ideal calculated positions for the purpose of structure-factor calculations only. A common isotropic displacement parameter was refined.

Data collection: XSCANS (Siemens, 1990). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

The financial support of the Natural Sciences and Engineering Research Council of Canada, through an individual Research Grant to PAWD, is gratefully acknowledged.

[^0]
References

Arsenault, J. J. I. \& Dean, P. A. W. (1983). Can. J. Chem. 61, 15161523.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Burnett, T. R., Dean, P. A. W. \& Vittal, J. J. (1993). Can. J. Chem. 72, 1127-1136.
Cras, J. A. \& Willemse, J. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard \& J. A. McCleverty, pp. 579-593. Oxford: Pergamon.
Dean, P. A. W. \& Srivastava, R. S. (1985). Inorg. Chim. Acta. 105. 1-7.
Dean, P. A. W., Vittal, J. J. \& Payne, N. C. (1985). Can. J. Chem 63, 394-400.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
McCormick, B. J., Beremon, R. \& Baird, D. (1984). Coord. Chem. Rev. 54, 99-130.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTLIPC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Vittal, J. J. \& Dean, P. A. W. (1993). Inorg. Chem. 32. 791-794

Acta Cryst. (1996). C52, 1182-1184

Benzyllithium tert-Butyl Methyl Etherate \dagger

Gerhard Müller, Martin Lutz and Martin WaldKIRCHER
Fakultät für Chemie, Universität Konstanz, Universitätsstrasse 10, D-78464 Konstanz, Germany: E-mail: xanorg@vg10.chemie.uni-konstanz.de
(Received 17 November 1995: accepted 19 January 1996)

Abstract

The title compound $\left[\mathrm{Li}\left(\mathrm{MeO}^{\prime} \mathrm{Bu}\right)\right.$ benzyl], $\left[\mathrm{Li}\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)\right.$ $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$], forms infinite chains consisting of alternating lithium cations and benzyl anions, each of the latter being η^{2}-coordinated through their C_{0} and $\mathrm{C}_{i p s, 0}$ atoms to two lithium counterions.

Comment

The structure of $\left[\mathrm{Li}\left(\mathrm{MeO}^{\prime} \mathrm{Bu}\right)\right.$ benzyl], (I) (Fig. 1), closely resembles that of [$\mathrm{Li}\left(\mathrm{OEt}_{2}\right.$)benzyl], determined previously (Beno, Hope, Olmstead \& Power, 1985). Slight differences exist, mainly between the $\mathrm{Li}-\mathrm{C}$ and $\mathrm{Li}-\mathrm{O}$ bonds, clearly induced by the different ether coordinated to lithium. In contrast to the structure determination of $\left[\mathrm{Li}\left(\mathrm{OEt}_{2}\right)\right.$ benzyl], in $\left[\mathrm{Li}\left(\mathrm{MeO}^{\prime} \mathrm{Bu}\right)\right.$ benzyl] all H atoms could be located and refined. This enables the complete 'coordination' geometry of the benzylic C_{Ω} atoms to be determined unambiguously. As a

(I)
result of the unsymmetrical η^{2}-complexation of the C_{α} (C7) and $\mathrm{C}_{i \text { pso }}$ (C1) atoms of each benzyl anion by two Li atoms, the terminal C_{α} atoms adopt distorted trigonal bipyramidal 'pentacoordination' consisting of two H atoms and $\mathrm{C}_{i p s \mathrm{~s}}$ in the equatorial plane (sum of the angles at C_{α} excluding the Li atoms: 360°) and two Li atoms in axial positions $\left[\mathrm{Li}-\mathrm{C}_{\alpha}-\mathrm{Li}^{\prime}=\right.$ 151.6(1) ${ }^{\circ}$; see Fig. 1 and Table 2]. This coordination geometry of carbon was first suggested by calculations for $\left[M-\mathrm{CH}_{3}-M\right]^{+}$cations ($M=\mathrm{Li}, \mathrm{Na}$ and other metals) and could be verified in a small number of organometallic compounds (Schade, Ragué Schleyer, Dietrich \& Mahdi, 1986, and references therein; Hoffmann et al., 1994). The preferred coordination of benzyl anions to lithium via their C_{0} and $\mathrm{C}_{i p s s}$ atoms was also demonstrated both by theory (Zarges, Marsch, Harms \& Boche, 1989; Sygula \& Rabideau, 1992, and references therein) and by structure determinations of the (pseudo)monomeric benzyllithium donor adducts $\left\{\mathrm{Li}\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3} \mathrm{~N}\right]\right.$ benzyl $\}$ (Patterman, Karle \& Stucky, 1970) and benzyllithium.thf.tmeda (thf $=$ tetrahydro-
\dagger (tert-Butyl methyl ether- O) lithium phenylmethanide.

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1045). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England

